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Abstract
Purpose  This paper is a systematic literature review of the use of artificial intelligence techniques to detect early dementia. 
It focuses on multi-modal feature analysis in combination with neuroimaging. The paper examines what past research sug-
gests about issues in the field, what dementia types researchers focus on, what are state-of-the-art methods in the different 
dementia detection groups, what combinations of modalities (images, text, speech, etc.) are frequently used, how models 
are evaluated and validated, what datasets researchers use, what are common pre-processing and feature extraction from 
neuroimages techniques, what are key issues in this research area, and what are potential future research areas.
Materials and methods  The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method was 
used to collect and summarize research in the scope of the defined problem. This study investigated early dementia detection 
problem from a multi-modal perspective, with neuroimaging being used as one of the modalities.
Results  Five databases were queried and 2881 sources were identified and processed in the literature review. 59 sources were 
selected after eligibility assessment. The study identified all points defined in the purpose of the research.
Conclusions  The main findings of the study were that Alzheimer’s disease and Mild Cognitive Impairment (MCI) are the 
most researched dementia types in the field; typical choice for dementia detection is Machine Learning (ML) methods; the 
most popular modalities combination is T1w + Fluorodeoxyglucose - Positron Emission Tomography (FDG-PET); accuracy, 
sensitivity and specificity are the main evaluation metrics used by the researchers; k-fold validation is being used the most; 
Alzheimer’s disease neuroimaging initiative (ADNI) is the most used dataset by researchers; intensity and spacial normali-
zation, skull stripping and segmentation are the most common pre-processing techniques for neuroimages; voxel average 
intensities are being used the most as features in classification extracted from neuroimages; explainability still persists as 
one of the main issues in adoption of developed methods in clinical practise; there is a lack of studies on Vascular dementia, 
Frontotemporal dementia, Parkinson’s disease and Huntington’s disease.

Keywords  Multi-modal data · Early dementia · Artificial intelligence · Machine learning · Deep learning · Neuroimaging · 
Systematic review

1  Introduction

Dementia is frequently described as a condition which 
progressively degrades a person’s cognitive abilities 
and should not be mistaken by being a composing part 
of aging. World Health Organization [1] describes 

dementia as “Dementia is a syndrome in which there is 
deterioration in cognitive function beyond what might 
be expected from the usual consequences of biological 
ageing.” and National Institute of Aging [2] describes 
it as “Dementia is the loss of cognitive functioning - 
thinking, remembering, and reasoning - to such an extent 
that it interferes with a person’s daily life and activities”, 
however US Department of Health and Human Services 
[3] describes it as “Dementia is an umbrella term used 
to describe a range of neurological conditions affecting 
the brain that gets worse over time”. Following these 
descriptions, it is easy to derive the meaning of dementia 
- a group of neurological diseases, which is associated 
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with degradation of cognitive abilities and brain function. 
This disorder, particularly in later stages, affects a person’s 
abilities to function as an individual and forces him/her 
to count on family or friend assistance. In later stages 
dementia is usually categorized as one of the diseases, 
where the most frequent is Alzheimer’s disease followed 
by vascular dementia and dementia with Lewy bodies as 
well as Parkinson’s disease.

Dementia has three stages (early, middle, late) and the 
first stage is the hardest to detect due to very mild effects 
on the cognitive abilities that can be misidentified as lack 
of rest or sleep. Therefore, detecting early dementia is 
still a challenging task for researchers. Early diagnosis of 
dementia is necessary for people to prepare for a (pres-
ently) inevitable future as there is no cure, however with 
existing symptomatic treatment patient can lengthen the 
period of time in which he can be independent or in rare 
cases reverse cognitive decline effects.

Typical ways to detect dementia are cognitive tests such 
as Clinical Dementia Rating (CDR) or Mini-Mental State 
Examination (MMSE), genetic test, laboratory tests or neu-
roimaging technologies - Magnetic Resonance Imaging 
(MRI), Positron Emission Tomography (PET), Computed 
Tomography (CT), Diffusion Tensor Imaging (DTI). With 
the raging artificial intelligence applications in medical sci-
ences and knowledge that Artificial Intelligence (AI) are 
excellent pattern recognizers it is crucial to try and employ 
Machine Learning (ML) and Deep Learning (DL) to solve the 
need for accurate diagnosis of early dementia utilizing multi-
modal data, because most often dementia is detected in the 
last stage, where medication can no longer help the patient.

After reviewing existing literature we identified the 
main research gap - a lack of review, which would focus 
on multi-modal data usage in detection of early dementia. 
One of the most frequent conclusions from reviewed arti-
cles was the lack of multi-modal methods. Therefore, this 
systematic literature review article will focus on reviewing 
existing research works which focus on multi-modal data 
utilization in detection algorithms.

List of scope elements (aims) to be identified in this research:

•	 Different dementia detection types;
•	 State-of-the-art methods to detect early dementia 

through multi-modal feature analysis;
•	 Most frequently used combinations of modalities with 

neuroimaging - neuroimaging proved itself throughout 
the years being one of the time-tested default choices 
when it comes to diagnosing dementia;

•	 Evaluation of performance and validation of such models;
•	 Datasets used in the studies;
•	 Common pre-processing and feature extraction tech-

niques from neuroimages;
•	 Existing issues in the field;

•	 Future research areas.

Most of the found literature reviews were not looking 
at the early dementia detection from multi-modal per-
spective. Therefore, our main contribution and novelty 
of this research is a systematic literature review which 
only focuses on multi-modality as being the key driver in 
improving AI models’ performance. That means we only 
review research works, which utilize multi-modal data.

The paper is structured as follows: Section 2 summa-
rizes existing literature reviews. Section 3 briefly describes 
research area background knowledge. Section 4 defines 
methodology used in this systematic literature review and 
gives a brief overview of the found articles. Section 5 pre-
sents found scientific articles during research, answers 
defined research questions and discuss identified issues, 
future research areas. Section 6 concludes the paper. Sec-
tion 5.10 briefly describes limitations of this study.

2 � Related works

In this section all articles will be listed that were found 
during the first stage of literature review. Stages will be 
discussed in the research methodology Section 4. In the 
introduction chapter we briefly mentioned all found and 
reviewed related literature reviews. In Table 1, we show 
the summary of all identified papers: paper first author 
and reference, when the paper is published, what demen-
tia type was the main focus of the literature review, what 
issues in the research area and future prospects we could 
identify from the paper, and some additional conclusions.

Findings are summarized and discussed in results sub-
section 5.1. Concluding findings of the related literature 
reviews is one of the research aims.

The main difference between existing literature reviews 
and this study is the focus on multi-modal data, where one 
of the modalities used is neuroimaging. After reviewing 
all found literature reviews, we identified that there is a 
lack of such study and therefore decided to investigate 
this research area, which can be defined as a novelty of 
this study.

3 � Problem domain

This section aims to provide background knowledge on early 
dementia detection categorized into several topics: risk fac-
tors, stages, types, traditional diagnosis, treatment, statisti-
cal influence of dementia on economics and demographics. 
After reading this section hopefully the reader will have a 
better understanding of the severity of this problem.
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3.1 � Risk factors

There are several identified risk factors of dementia [23]: 
excessive use of alcohol, traumatic brain injury, air pollu-
tion, lack of education, high blood pressure (hypertension), 
loss of hearing, heavy smoking, overweight, depression, 
physical inactivity, diabetes, social contact. Some of these 
risk factors can be managed, modified or avoided. Vascular 
risk factors (factors which can cause cardiovascular disease 
development) [24]: hypertension, diabetes, obesity, smok-
ing, can be managed to reduce the possibility of develop-
ing dementia. Employing a healthy, active lifestyle, quitting 
smoking, treating hypertension and diabetes on time, can 
greatly reduce the risk of dementia [25–27]. Modifiable 
risk factors are physical inactivity, social contact, educa-
tion. Avoidable risk factors are use of alcohol and smoking. 
However, we cannot easily control air pollution, traumatic 
brain injuries or a loss of hearing.

3.2 � Stages

Dementia has a different effect on every person, which 
depends on the type of it, whether he/she has multiple 
dementias, and at which stage the disease was noticed. There 
are three stages of dementia: early, middle and late [1]. Each 
stage has a set of common symptoms. In diagnosis practice, 
psychiatrists use scales, which allow to quantify cognitive 
abilities of a patient into severity categories logically equiva-
lent to different stages of dementia. Most frequently used 
scales are Clinical Dementia Rating (CDR) [28] and Mini-
Mental State Examination (MMSE) [29], which are used as 
cognitive abilities tests [30]. Both quantify cognitive impair-
ment in continuous scale, CDR (0 - 3) and MMSE (0 - 30). 
See the CDR scale in Table 2 below:

See the MMSE scale in Table 3 below:
From the scales, we can see that CDR is more granu-

lar than MMSE, although they have similar categories of 
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Table 2   The Clinical Dementia Rating

Score Impairment severity

0 Cognitive normal
0.5 Questionable or very mild
1 Mild
2 Moderate
3 Severe

Table 3   Mini-Mental State 
Examination scores

Score Impairment severity

0-17 Cognitive normal
18-23 Mild
24-30 Severe
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severity: Cognitive Normal (CN), Mild Cognitive Impair-
ment (MCI) and severe cognitive impairment. Common 
symptoms between different stages of dementia are briefly 
described in Table 4 below:

There are also other type of cognitive impairment tests 
such as: Alzheimer’s disease assessment scale (ADAS) 
[31], Rey Auditory Verbal Learning Test (RAVLT) [32], 
Geriatric Depression Scale (GDS) [33], or questionnaires 
such as: Functional Activities Questionnaire (FAQ) [34], 
Neuropsychiatric Inventory Questionnaire (NPIQ) [35].

3.3 � Types

This syndrome can be categorized into multiple different 
sub-categories (diseases or disorders), which have their own 
symptoms. See Table 5 for symptoms categorized for each 
common dementia type, which were picked out from a set 
[36–44] of articles.

Each type of dementia has its symptoms. However, com-
mon symptoms are shared across all of them: some degree 
of memory loss, difficulties of doing usual activities, confu-
sion, mood or behavior changes. Symptoms of dementia tend 

to get worse over time, therefore it is important to diagnose 
it as early as possible to prepare for the future.

3.4 � Traditional diagnosis

Traditional ways of diagnosing dementia are cognitive abili-
ties tests, such as CDR [28], MMSE, Abbreviated Mental 
Test Score (AMTS) and Modified Mini-Mental State Exam-
ination (3MS) [30], which detects cognitive impairments. 
Some recent research [45] finds new tests such as Cognetiv-
ity’s Integrated Cognitive Assessment (CognICA) being a 
sufficient detector of early-stage Dementia. Laboratory tests 
are another way of diagnosing dementia, one of more recent 
research [46] finds reference between specific proteins, par-
ticularly higher pTau181 and lower beta-amyloid, found in 
patients’ blood can provide enough evidence about having 
Alzheimer’s. There are also other types of evaluations, for 
example, a visit to psychiatric may help to identify any men-
tal health issues that may cause dementia symptoms. Also, 
genetic tests exist [47], which detects single-gene changes, 
that can influence the development of the dementia. Other 
most frequently used diagnostic tools are brain scans. 

Table 4   Common symptoms of dementia during different stages

Stage of dementia Common symptoms

No dementia or 
cognitive normal

No memory loss, difficulties with orientation, problem solving; Can live independently and does not require assistance for 
self-care.

Early (Very mild) Occasional memory loss, but frequently being misidentified as lack of rest or sleep; Does not experience difficulties with 
orientation, however, sometimes one can catch himself thinking of the solutions for common problems longer than 
usual; Does not require any assistance.

Middle (Mild) Constant moderate memory loss; Difficulty with orientation of time, location, problem solving; Usually cannot live 
independently and requires slight assistance for self-care.

Late (Severe) Severe memory loss; No orientation except for people; Unable to solve problems; Usually in nursing home due to 
challenging nature of taking care of such people; Requires significant assistance with self-care.

Table 5   Symptoms specific to each common dementia type

Disease/Dementia Symptoms

Alzheimer’s disease Memory loss issues, confusion, difficulties while talking and thinking, muscle coordination 
issues. Patients find it hard to recognize objects.

Vascular dementia Similar to Alzheimer’s, but with less obvious memory loss issues in the early stage. Most 
likely have mood issues, even depression, finds difficulties while thinking rationally, 
keeping attention. Difficulties walking, stroke-like symptoms: weak muscles, paralysis.

Frontotemporal dementia A group of neurodegenerative diseases. Change of personality, aphasia (linguistic 
problems), obsessiveness, behavior changes, compulsiveness.

Dementia with Lewy bodies (Parkinson’s disease 
is a sub-type)

Has similar to Alzheimer’s symptoms with combination of confusion, hallucinations, 
fainting and sleep disorders, parkinsonism (tremors, stiffness, postural instability).

Huntington’s disease Aggressiveness, mood problems, delusions, depression, feeling dissatisfied, lack of 
initiative, poor self-care.

Human Immunodeficiency Viruse (HIV) dementia This type of dementia is classified as a complication of HIV infection. Frequent symptoms 
are cognitive impairment, behavior change, movement and/or muscle problems. Often 
leads to death.

Mixed dementia Symptoms mixed and depends on the combination of dementias patient has.
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Typically, a combination of different brain scans can show 
multiple problems, which can cause dementia symptoms. 
CT, MRI, PET scanning are common choices to detect a 
possible cause of dementia. These scans can show tumors, 
strokes or identify transformations in the brain. Although 
usually dementia is diagnosed by eliminating everything 
else, which could cause any symptom by known diseases.

3.5 � Treatment

Presently, there is no cure for dementia [1, 48–50]. How-
ever, early diagnosis and symptomatic treatment [51–56] 
can lengthen the period where one can live independently 
and actively until the decline of cognitive abilities becomes 
unbearable. One of the treatment options is medication. 
Majority of medications are focused on Alzheimer’s disease, 
because it is the most common type of Dementia [57]. These 
are the frequently prescribed medications (acetylcholinester-
ase inhibitors): donepezil, rivastigmine, galantamine. Stud-
ies finds that these medications help to treat Lewy body and 
vascular dementia, Parkinson’s and Alzheimer’s diseases, 
mixed dementia forms [57]. Another type of medication is 
memantines (medications which treat memory loss), these 
can also treat the mentioned dementia types.

Other forms of treatments are related to being active, 
stimulating brain activity by training memory, learning new 
languages, and improving problem-solving skills. These can 
be grouped into Cognitive Stimulation Therapy (CST) which 
might help people who have mild to moderate dementia. 
However, there is a lack of evidence, that these activities can 
be effective as medication [58].

3.6 � Statistics

The World Health Organization (WHO) estimates that pres-
ently 55 M people live with dementia. This number could 
reach 78 M by 2030 and 139 M by 2050 [1]. In Europe alone 
there are around 11 M people with dementia [59].

If we look how the disease prevalence is categorized by 
sex, we can see that women are more affected by dementias 
in all age ranges [60].

Alzheimer’s disease is number 1 diagnosed dementia 
with around 50-60% contribution [60, 61]. Where vascular 
dementia falls to second place with 25% and dementia with 
Lewy bodies - third with 15%.

Ten to fifteen percent of patients with MCI develop 
dementia each year [62].

Alzheimer’s Association states in their facts and figures 
that [63] “1 in 3 seniors dies with Alzheimer’s or another 
dementia. It kills more than breast and prostate cancer com-
bined”. Dementia and Alzheimer’s disease is listed with 
number 7 in top 10 causes of deaths worldwide [64] reaching 

nearly 2 M deaths. Dementia being in the top 10 of causes of 
deaths emphasizes importance of help for people suffering 
from this disease. On average people with Alzheimer’s and 
other dementias over age 65 live 4 - 8 years after diagnosis, 
sometimes even 20 years [63]. This explains how sometimes 
dementia progression can be slow, tiring, and unpredictable.

The cost of care for patients who have dementia is 
increasing. Annually one patient care costs around US 
$19k. The calculated cost worldwide in 2015 reached 
$167B and predicted to cost $500B in 2030 and $1.9T in 
2050 [65]. This reflects the need to find a cure for dementia 
and related diseases.

4 � Methodology

Systematic literature review allows us to identify, exam-
ine, and evaluate all existing relevant research to the pur-
pose of this study. This systematic literature review is 
based on Preferred Report Items for Systematic Reviews 
and Meta-Analysis statements (PRISMA) methodology, 
which serves purpose, that allows to perform easier repli-
cation and quicker evaluation of search results as well as 
finding all research area gaps, that can be utilized for new 
research options.

4.1 � Design

This systematic literature review will be carried out by rais-
ing questions relevant to the research area and then answer-
ing with discussion of results conducted through database 
screenings.

4.1.1 � Research questions

The research will address these questions: 

1.	 Is there any existing work in this area of research (litera-
ture reviews)? What conclusions about future research 
areas and existing problems other researchers identified?

2.	 What types of dementia detection researchers focus their 
research on?

3.	 What are state-of-the-art methods in detection of early 
dementia in the field of AI/ML/DL?

4.	 What modalities are being used in combination with 
neuroimaging to detect early dementia?

5.	 How is model performance evaluated and validated?
6.	 What datasets researchers used in their studies?
7.	 What are the commonly used pre-processing and feature 

extraction from neuroimages techniques?
8.	 What are the key issues in detection of early dementia?
9.	 What are the potential future research areas?
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4.1.2 � Process

The systematic literature review will involve two stages: 

1.	 Collecting existing literature reviews relevant to the 
research purpose and the discussion of the results 
(answering first research question);

2.	 Collecting existing research works relevant to research 
purpose and discussion of the results (answering the rest 
of the research questions).

Each stage involves database screening with relevant to 
research area keywords. This research focuses on finding 
journal articles from accredited online databases. Search 
engines were used to find relevant studies.

4.1.3 � Database screening

As previously mentioned, online databases were used to collect 
papers relevant to this research. Selected databases can be found 
in Table 6. These databases were selected, because they can 
provide good enough search results for highest quality journal 
article papers relevant to the detection of dementia using AI and 
ML. Institutional access of Kaunas University of Technology was 
used in retrieval of the research papers. Only full text papers were 
included in the search results. To accommodate the necessity to 
find the state-of-the-art methods in the research area, all search 
results are filtered to be published from 2018 until present.

These keywords were identified as search terms: early, 
dementia, Alzheimer’s, Parkinson’s, Huntington’s, mild 
cognitive impairment, MCI, artificial intelligence, machine 
learning, deep learning, neuro, medical, diagnosis, recogni-
tion, identification, detection.

For the first stage of systematic literature review, addi-
tional search terms were included: review, systematic review. 
Search terms are aggregated into a search query with logical 
operations (AND) and (OR). Search queries are listed below:

•	 IEEE Xplore
	   (“Review” OR “Systematic review”) AND “Early” 

AND (“Dementia” OR “Alzheimer’s” OR “Parkinson’s” 
OR “Huntington’s” OR “Mild cognitive impairment” OR 

“MCI”) AND (“Artificial intelligence” OR “Deep learn-
ing” OR “Machine learning” OR “Neuro” OR “Medi-
cal”) AND (“Diagnosis” OR “Recognition” OR “Identi-
fication” OR “Detection”). Part of the query: “(“Review” 
OR “Systematic review”) AND”, is removed on Stage 2.

•	 Scopus

–	 Stage 1:
	   TITLE-ABS-KEY("Review" OR "Systematic 

review") AND TITLE-ABS-KEY("Early") AND 
TITLE-ABS-KEY("Dementia" OR "Alzheimer’s" 
OR "Parkinson’s" OR "Huntington’s" OR "Mild 
cognitive impairment" OR "MCI") AND TITLE-ABS-
KEY("Artificial intelligence" OR "Deep learning" OR 
"Machine learning" OR "Neuro" OR "Medical") AND 
TITLE-ABS-KEY("Diagnosis" OR "Recognition" 
OR "Identification" OR "Detection") AND 
PUBYEAR>2017 AND (LIMIT-TO(PUBSTAGE, 
"final")) AND (LIMIT-TO(DOCTYPE, "re")) AND 
(LIMIT-TO(SUBJAREA, "COMP")) AND (LIMIT-
TO(LANGUAGE, "English")).

–	 Stage 2:
	   TITLE-ABS-KEY("Early") AND TITLE-

ABS-KEY("Dementia" OR "Alzheimer’s" OR 
"Parkinson’s" OR "Huntington’s" OR "Mild 
cognitive impairment" OR "MCI") AND TITLE-
ABS-KEY("Artificial intelligence" OR "Deep 
learning" OR "Machine learning" OR "Neuro" OR 
"Medical") AND TITLE-ABS-KEY("Diagnosis" OR 
"Recognition" OR "Identification" OR "Detection") 
AND PUBYEAR>2017 AND PUBYEAR<2023 
AND (LIMIT-TO(PUBSTAGE, "final")) AND 
(LIMIT-TO(SUBJAREA, "COMP")) AND ( LIMIT-
TO(DOCTYPE, "cp") OR LIMIT-TO(DOCTYPE, 
"ar")) AND (LIMIT-TO(LANGUAGE, "English")) 
AND (LIMIT-TO(SRCTYPE, "j") OR LIMIT-
TO(SRCTYPE, "p")).

•	 Web of Science

–	 Stage 1:
	   (AB= "Review" OR AB="Systematic review") 

AND AB="Early" AND (AB="Dementia" OR 

Table 6   Selected databases

Database URL

IEEE Xplore https://​ieeex​plore.​ieee.​org/​search/​advan​ced, (last access on 14 December 2023)
Scopus https://​www.​scopus.​com/​search/​form.​uri?​displ​ay=​basic#​basic, (last access on 14 December 2023)
Web of Science https://​www.​webof​scien​ce.​com/​wos/​woscc/​advan​ced-​search, (last access on 14 December 2023)
Science Direct https://​www.​scien​cedir​ect.​com/​search, (last access on 14 December 2023)
Springer link https://​link.​sprin​ger.​com/​advan​ced-​search, (last access on 14 December 2023)

https://ieeexplore.ieee.org/search/advanced
https://www.scopus.com/search/form.uri?display=basic#basic
https://www.webofscience.com/wos/woscc/advanced-search
https://www.sciencedirect.com/search
https://link.springer.com/advanced-search
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AB="Alzheimer’s" OR AB="Parkinson’s" OR 
AB="Huntington’s" OR AB="Mild cognitive impair-
ment" OR AB="MCI") AND (AB="Artificial intelli-
gence" OR AB="Deep learning" OR AB="Machine 
learning" OR AB="Neuro" OR AB="Medical") 
AND (AB="Diagnosis" OR AB="Recognition" 
OR AB="Identification" OR AB="Detection") 
OR (TI="Review" OR TI="Systematic review") 
AND TI="Early" AND (TI="Dementia" OR 
TI="Alzheimer’s" OR TI="Parkinson’s" OR 
TI="Huntington’s" OR TI="Mild cognitive impair-
ment" OR TI="MCI") AND (TI="Artificial intelli-
gence" OR TI="Deep learning" OR TI="Machine 
learning" OR TI="Neuro" OR TI="Medical") 
AND (TI="Diagnosis" OR TI="Recognition" OR 
TI="Identification" OR TI="Detection") AND 
Review Article (Document Types) AND 2018 OR 
2019 OR 2020 OR 2021 OR 2022 (Publication 
Years) AND Review Article (Document Types) AND 
Book Chapters (Exclude - Document Types) AND 
Engineering OR Computer Science (Research Areas).

–	 Stage 2:
	   TI="Early" AND (TI="Dementia" OR 

TI="Alzheimer’s" OR TI="Parkinson’s" OR 
TI="Huntington’s" OR TI="Mild cognitive impair-
ment" OR TI="MCI") AND (TI="Artificial intel-
ligence" OR TI="Deep learning" OR TI="Machine 
learning" OR TI="Neuro" OR TI="Medical") 
AND (TI="Diagnosis" OR TI="Recognition" 
OR TI="Identification" OR TI="Detection") 
OR AB="Early" AND (AB="Dementia" OR 
AB="Alzheimer’s" OR AB="Parkinson’s" OR 
AB="Huntington’s" OR AB="Mild cognitive impair-
ment" OR AB="MCI") AND (AB="Artificial intel-
ligence" OR AB="Deep learning" OR AB="Machine 
learning" OR AB="Neuro" OR AB="Medical") 
AND (AB="Diagnosis" OR AB="Recognition" OR 
AB="Identification" OR AB="Detection") AND 
2022 OR 2021 OR 2020 OR 2019 OR 2018 (Publi-
cation Years) AND Article (Document Types) AND 
Early Access OR Book Chapters OR Proceeding Paper 
(Exclude - Document Types) AND English (Lan-
guages) AND Computer Science (Research Areas).

•	 Science Direct

–	 Stage 1:
	   Find articles with these terms: (“Review” OR 

“Systematic review”) AND “Early” AND (“Demen-
tia” OR “Alzheimer’s” OR “Parkinson’s” OR “Hun-
tington’s” OR “Mild cognitive impairment” OR 
“MCI”). Title, abstract or author-specified keywords: 
(“Artificial intelligence” OR “Deep learning” OR 

“Machine learning” OR “Neuro” OR “Medical”) 
AND (“Diagnosis” OR “Recognition” OR “Identi-
fication” OR “Detection”). Query is filtered to only 
“Review articles” in a field of “Computer Science”.

–	 Stage 2:
	   Same as Stage 1, but part of the query: “(“Review” 

OR “Systematic review”)”, is removed. Query is fil-
tered to only “Research articles” in a field of “Com-
puter Science”.

•	 Springer link
	   (“Review” OR “Systematic review”) AND “Early” 

AND (“Dementia” OR “Alzheimer’s” OR “Parkinson’s” 
OR “Huntington’s” OR “Mild cognitive impairment” OR 
“MCI”) AND (“Artificial intelligence” OR “Deep learn-
ing” OR “Machine learning” OR “Neuro” OR “Medi-
cal”) AND (“Diagnosis” OR “Recognition” OR “Identi-
fication” OR “Detection”). Part of the query: “(“Review” 
OR “Systematic review”) AND”, is removed on Stage 2. 
Query was filtered to only “Computer Science” field. All 
finding were further filtered to only include “Articles”.

4.2 � Reviewing procedure

This section will describe the process which was used to 
carry out this systematic literature review.

4.2.1 � Selection of papers

As described in the previous sections, this systematic litera-
ture review will have two stages. In the first one, database 
screening is done to find all already existing reviews, which 
correlates to the purpose of this research. The same process 
will be done for the second stage in which we collect all 
research papers instead of review articles.

4.2.2 � Inclusion and exclusion criteria

To carry out systematic literature review inclusion and exclu-
sion criteria were defined to help differentiate studies relevant 
to selected research area. All papers which did not meet inclu-
sion criteria were removed from the eligibility study.

Inclusion Criteria

•	 Stage 1: 

1.	 Articles reviewing different AI and ML methods for 
early detection of dementia.

•	 Stage 2: 

1.	 Articles proposing a method for the detection of 
early dementia;
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2.	 Articles which compare different methods for the 
detection of early dementia.

Exclusion Criteria

•	 Stage 1: 

1.	 Not a systematic review article.

•	 Stage 1 and 2: 

1.	 Articles which do not mention anything related to 
dementia in title or abstract;

2.	 Non-English articles;
3.	 Articles which do not focus on early detection of 

dementia;
4.	 Articles which do not use any AI/ML/DL methods/

techniques;
5.	 Duplicate articles;
6.	 Articles which do not clearly report results and con-

clusions;
7.	 Conference proceedings or papers;

•	 Stage 2: 

1.	 Review article.
2.	 Does not use multi-modal approach;
3.	 Does not use neuroimaging as one of modalities;
4.	 Does not provide details about feature extraction;
5.	 Does not provide details about validation scheme;
6.	 Does not provide any details whether data was 

pre-processed.
7.	 Articles which do not provide details about evalua-

tion techniques;

Short summary of proportion of initial and final selected 
papers can be seen in Fig. 1. Figure represents initial count 
of selected sources for each database which was screened as 
well as final number after eligibility study.

4.2.3 � Collection of data

Data collected during the database screening is described below: 

	 1.	 Authors;
	 2.	 Title;
	 3.	 Year of publication;
	 4.	 Publication medium – journal title;
	 5.	 Number of references;
	 6.	 Country of origin – researchers’ country of origin;
	 7.	 Contribution of the article – main contribution of the 

article as described by the authors;
	 8.	 Subjective summary – summary of the article from this 

research author’s perspective;
	 9.	 What dementia type was investigated;
	10.	 Types of modalities – what types of modalities were 

used in the detection of dementia (images, text, 
speech etc.);

	11.	 AI/ML/DL methods used – what type of AI/ML/DL 
methods were used in the research;

	12.	 Evaluation techniques – what type of evaluation was 
performed for the proposed or compared method(s).

	13.	 Validation techniques - how models were validated;
	14.	 Pre-processing techniques - what kind of pre-process-

ing methods were used;
	15.	 Feature extraction techniques - how features were 

extracted from data samples;

Fig. 1   Proportion of papers 
selected in the first stage of the 
study
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	16.	 Issues - what issues were identified by the authors;
	17.	 Future research areas – what future research areas were 

identified by the authors.

4.3 � Overview of collected data

4.3.1 � Stage 1 overview

During the first stage, 547 review articles were identified through 
database screening. After removing duplicates, and title with 

abstract screening step, 476 sources were eliminated leaving with 
71 review articles on which full text eligibility inspection was car-
ried out. After full text inspection an additional 52 articles were 
eliminated. Only 19 review articles met inclusion criteria. High 
level overview of performed steps is illustrated in Fig. 2.

All review articles used in this study are from 2018 to 
2023. Figure 3 represents year distribution of articles after 
assessing eligibility. Most of the articles are published in 
2023 and 2022 - 12 articles out of 19 selected. This means 
that the research area is relatively new and has become 
more popular in recent years.

Fig. 2   PRISMA methodology chart for 1st stage of systematic literature review
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Country of origin of publication first author was also 
collected during review to obtain overview of contribu-
tions from research community around the globe. Geo-
graphical distribution can be seen in Fig. 4. Clearly India 
contributes the most articles.

Distribution of scientific journals of literature reviews 
can be seen in Table 7. Most popular journals are “Arti-
ficial Intelligence in Medicine”, “Archives of Compu-
tational Methods in Engineering” and “Sensors”. Most 
of the journals in one way or another are related to the 
research area this study is investigating, except for more 
generic “Processes” and “IEEE Access” and “Sensors”. 
The highest citations median (160) is observed from jour-
nal "Artificial Intelligence in Medicine". High number of 
references included in articles, particularly in literature 
reviews, shows if the study is of higher quality (more stud-
ies reviewed is equal to better insights of research area).

4.3.2 � Stage 2 overview

During the second stage, 2311 articles were identified through 
database screening. After removing duplicates, reviewing titles 
and abstracts, 79 articles were selected for full text eligibil-
ity assessment. After full text review an additional 39 articles 
were eliminated and only 40 articles met inclusion criteria. 
High level overview of performed steps is illustrated in Fig. 5.

Like the first stage, all selected articles were published 
during the timeframe of 2018 to 2023. Figure 6 illustrates 
year distribution of articles which were reviewed for eligibil-
ity during the second stage of the research. Same observa-
tion can be seen as in first stage, majority of the articles are 
published in the last 3 years. In the figure we can also see 
that the popularity of the research area is high.

Distribution of countries for the second research step was 
also observed and is illustrated in Fig. 7. The most contrib-
uting countries to the research area are China and India, 
where authors from China published majority of the selected 
articles (24 articles).

During the second research stage a list of all journals 
from scientific articles which were reviewed for eligibility 
was generated. The most popular journals where research-
ers published findings from experiments are “Computers 
in Biology and Medicine” (8 articles), “Biomedical Sig-
nal Processing and Control” (3 articles), “Medical Image 
Analysis” (3 articles) and “Neural Computing and Appli-
cations” (3 articles). The full list of journals is provided 
in Table 8. Highest citations median (65) is from journal 
"Medical Image Analysis", following by journal "Computers 
in Biology and Medicine" with citation median 56.5. From 
the quality assessment we can see, that mostly high quality 
articles were included in the study.

The full list of selected papers with references, publica-
tion year, dementia type is provided in the Table 9.

Fig. 3   Year distribution of selected review papers in the first stage of 
the study

Fig. 4   Distribution of countries 
of selected review papers in the 
first stage of the study
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5 � Results and discussion

In this section research findings will be presented in 
a form of answers to defined research questions from 
sub-section 4.1.1.

5.1 � Is there any existing work in this area of research 
(literature reviews)? What conclusions about future 
research areas and existing problems other 
researchers identified?

All the related works (19 articles) found in the research area 
are represented by Table 1. The summary of issues research-
ers mentioned is displayed in the Table 10 (only the common 
issues are included and are sorted by number of mentions in 
decreasing order).

Existing problems:
Each common issue is discussed in the list below: 

	 1.	 Explainability
		    The biggest problem in the research area currently 

is the explainability of the results which are produced 
by ML/DL method. Most of the ML/DL methods are 
“blackboxes” which takes in an input and outputs some 
sort of decision, but there is no way to explain the solu-
tion proposed, which makes it nearly impossible for 
medical personnel to trust the ML/DL based methods. 
This problem mostly exists in areas where critical deci-
sions are made, for example, a method which yields 
a diagnosis whether person has MCI or not based on 
data, that was given for the method. In a positive clas-
sification case, it is crucial that medical personnel 

could examine why the decision was imposed. In the 
literature we can find many different approaches used 
to increase transparency and explainability of models, 
like Shap values [106] or Grad-CAM [107] and others.

	 2.	 Overfitting small datasets
		    One of the biggest problems in this research area is the 

datasets with limited data. Collecting data with multiple 
modalities is expensive and therefore most of the datasets 
are too small to train a DL model. However, research-
ers are still experimenting and there is a potential that 
good results showing methods have collected data from 
experiments where models have overfitted these small 
datasets, because of small variance in data.

	 3.	 Noisy, poor-quality data
		    Most of the researchers in dementia detection are 

dependent on publicly available datasets. One clear 
observation from the collected data is that those data-
sets are usually low quality, noisy and require addi-
tional pre-processing steps to clean and prepare data 
for training/validation/testing. This signals the need for 
standard framework to pre-process data, which could 
be applied for most used data modalities. There are 
multiple different neuroimaging pre-processing tools, 
for example FSL [108] or FreeSurfer [109] or other 
modalities - [110] for genetic data, which makes the 
pre-processing easier, but there is a lack of one tool 
which would do it all or integrate different software 
solutions for multi-modal data pre-processing.

	 4.	 Resource inefficient models
		    Deep learning methods tend to be resource hungry 

due to deep and large neural networks. Training such 
models requires a lot of hardware resources and is 

Table 7   List of names of 
journals from papers selected in 
the first stage of the study and 
quality assessment

Journal Number of citations in 
publications

Citations 
median

Cognitive Computation [18] - 179, [19] - 157 168
Artificial Intelligence in Medicine [4] - 198, [12] - 122 160
Archives of Computational Methods in Engineering [8] - 185, [7] - 107 146
Sensors [15] - 156, [10] - 123 139.5
Journal of Biomedical Informatics [5] - 254 -
IEEE Access [13] - 204 -
Alzheimer’s Research and Therapy [16] - 149 -
Computers in Biology and Medicine [11] - 129 -
Bioengineering [6] - 73 -
IEEE Reviews in Biological Engineering [14] - 94 -
Health Information Science and Systems [21] - 77 -
Frontiers in Computational Neuroscience [17] - 73 -
Processes [9] - 72 -
International Journal of Intelligent Networks [22] - 67 -
Brain Informatics [20] - 47 -
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usually slow. Therefore, there is a need for resource 
efficient models, which could be trained with limited 
hardware capabilities and the training time would be 
comparable to machine learning methods.

	 5.	 Data imbalance
		    Another problem with datasets is class imbalance. 

Preparing datasets is the most important step in the 
process of training a DL/ML model. In classification, 
it is crucial that each individual class has the same 
number of samples. If we have imbalanced dataset, 
there is a huge possibility that our classifier will learn 
more features from the dominant class and will over-

fit the classes with less data samples. This degrades 
model generalizability.

	 6.	 Lack of multi-modal methods
		    In clinical practice medical personnel always try to 

evaluate as many different data modalities as they can 
before giving a diagnosis, whether it is neuropsycho-
logical evaluation with cognitive tests or evaluating 
protein data in blood from laboratory tests or reviewing 
neuroimaging data from structure/function magnetic 
resonance imaging. It is crucial that researchers shift 
towards real-world scenarios and employ methods 
which can work with multiple data modalities. Addi-

Fig. 5   PRISMA methodology chart for 2nd stage of systematic literature review
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tional data always helps to improve not only the per-
formance of models, but also robustness.

	 7.	 Data leakage
		    Data leakage is a problem which occurs not only in 

this research area, but in the whole DL/ML industry. 
It is related to small datasets with a limited number 
of samples available. Leakage is a use of testing data 
in training. Such models do not generalize well in 
the domain and produce false results. Because of this 
it is impossible to validate whether such models are 
proper solutions.

	 8.	 No standard benchmark
		    There is no standard evaluation benchmark in the 

research area of early dementia detection, which com-

plicates the process of comparing different solutions. 
There are a couple of evaluation metrics used, for 
example, sensitivity or specificity, but no approved and 
standardized benchmark available. Having the standard 
benchmark would significantly help researchers com-
pare their solutions with existing ones, and potentially 
support the need for more accurate, higher performing 
solutions to be higher in the rank.

	 9.	 Long time to label the data
		    This problem is particularly sensitive in classifica-

tion, object detection and segmentation. Preparing data 
for supervised learning models requires a lot of effort 
and human labor. In some cases, due to rush, human 
error or subjectiveness, prepared data can be biased, 

Fig. 6   Year distribution of 
selected papers in the second 
stage of the study

Fig. 7   Distribution of countries 
of selected papers in the second 
stage of the study
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and this degrades performance of models trained with 
such datasets.

	10.	 Hard to select relevant features
		    In ML scenarios human expert is responsible for 

feature extraction and preparation for models. For 
example, in neuroimaging, researchers tend to spend 
more time on feature engineering than to use DL 
methods. There are segmentation tools in the FLS and 
FreeSurfer packages, which allow to extract Region of 
Interest (ROI) data from brain scans. Then the prob-
lem occurs, how to select which regions features to 
use in training. There is a potential that various feature 
selection methos will exclude features, which may be 
related to the regions that are more participating in 
disease progression than others.

	11.	 Lack of early dementia detection methods
		    Detecting dementia early is important for patients as 

they can prepare for future better or even reverse some 
of cognitive decline effects [111]. However, majority of 
researchers focus on detection of dementias that already 
progressed into diseases like Alzheimer’s or Parkinson’s, 

because the differences of brain tissue changes are 
evident. However, that is not the case for early dementias, 
where changes are subtle and hard to detect.

	12.	 Lack of studies in some other regions
		    This issue arises due to the most common datasets 

such as [112] being prepared by one country initiative 
in this case US, but it is known, that there are some 
anatomical differences in the brain in different ethnic 
groups and races [113]. DL/ML methods are very sen-
sitive to the differences of dataset domains. For exam-
ple, if training data is used from one dataset, which 
has only MRIs collected from asians, but validation 
set will have MRIs only from americans, algorithm 
will perform poor due to differences between the latent 
spaces of the datasets.

Future research areas:
The summary of future areas that researchers mentioned 

is displayed in the Table 11 (only the common future areas 
are included and sorted by number of mentions in decreas-
ing order).

Table 8   List of names of journals from papers selected in the second stage of the study and quality assessment

Journal Number of citations in publications Citations 
median

Medical Image Analysis [66] - 67, [67] - 65, [68] - 58 65
Computers in Biology and Medicine [69] - 87, [70] - 81, [71] - 60, [72] - 59, [73] - 54, 

[74] - 48, [75] - 46, [76] - 31
56.5

Biomedical Signal Processing and Control [77] - 71, [78] - 52, [79] - 37 52
Frontiers in Neuroinformatics [80] - 54, [81] - 40 47
Neural Computing and Applications [82] - 97, [83] - 45, [84] - 23 45
Neurocomputing [85] - 52, [86] - 33 42.5
Journal of Biomedical Informatics [87] - 55 -
IEEE Access [88] - 48 -
Physics in Medicine and Biology [89] - 47 -
IEEE Multimedia [90] - 20 -
The Visual Computer [91] - 25 -
International Journal of Imaging Systems and Technology [92] - 38 -
IEEE Journal of Biomedical and Health Informatics [93] - 48 -
International Journal of Intelligent Engineering and Systems [94] - 33 -
Neuroinformatics [95] - 34 -
International Journal of Signal and Imaging Systems Engineering [96] - 49 -
BMC Bioinformatics [97] - 49 -
IEEE/ACM Transactions on Computational Biology and Bioinformatics [98] - 87 -
Journal of Medical and Biological Engineering [99] - 52 -
Information Fusion [100] - 51 -
Knowledge Based Systems [101] - 51 -
Computerized Medical Imaging and Graphics [102] - 42 -
IET Image Processing [103] - 28 -
International Journal of Advanced Computer Science and Applications [104] - 42 -
Mathematics [105] - 37 -
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Each common future area is discussed in the list below: 

1.	 Multi-modal solutions
	   Most researchers mentioned multi-modal solutions as 

being a future direction in the research area. The big-
gest advantage of multi-modal solutions seems to be the 
performance increase of the models. However, there is 

a possibility that suboptimal feature fusion techniques 
will be used, but in general, models with multi-modal 
data usually yield higher accuracy.

2.	 Explainability
	   As mentioned in the issues, where models lack of 

explainability, researchers are suggesting, that in the 
future ML and DL models will become more transpar-

Table 9   List of selected papers in the second stage of research

# Reference Year Dementia detection type

1 Yuan et al. [98] 2021 Stable Mild Cognitive Impairment (SMCI) vs Progressive Mild Cognitive Impairment (PMCI)
2 Bi et al. [93] 2021 Early Mild Cognitive Impairment (EMCI) vs CN
3 Song et al. [88] 2020 EMCI vs CN, Late Mild Cognitive Impairment (LMCI) vs CN, EMCI vs LMCI
4 Dong et al. [73] 2022 AD vs CN, MCI vs CN, AD vs MCI
5 Jia and Lao [83] 2022 CN vs Significant Memory Concern (SMC), CN vs MCI, SMC vs MCI, SMC vs AD, MCI vs AD, CN vs 

AD
6 Pahuja and Prasad [76] 2022 PD vs CN
7 Kumari et al. [82] 2022 AD vs CN, MCI vs CN, AD vs MCI
8 Jin et al. [81] 2022 EMCI vs LMCI
9 Angkoso et al. [94] 2022 AD vs MCI vs CN, AD vs MCI, MCI vs CN, AD vs CN
10 Dwivedi et al. [90] 2022 CN vs AD, CN vs MCI, AD vs MCI
11 Liu et al. [66] 2022 Stable Subjective Cognitive Decline (SSDC) vs Progresive Subjective Cognitive Decline (PSDC), PMCI 

vs SMCI
12 Abdelaziz et al. [87] 2021 CN vs AD, CN vs SMCI, CN vs PMCI
13 Liu et al. [68] 2021 AD vs CN
14 Liu et al. [97] 2020 EMCI vs CN
15 Castellazzi et al. [80] 2020 AD vs Vascular Dementia (VD)
16 Zhu Et al. [85] 2019 AD vs CN, MCI vs CN, PMCI vs SMCI
17 Lahmiri and Shmuel [77] 2019 AD vs CN
18 Hojjati et al. [69] 2018 SMCI vs PMCI
19 Liu et al. [95] 2018 AD vs CN, PMCI vs CN, SMCI vs CN
20 Asim et al. [92] 2018 AD vs CN, AD vs MCI, MCI vs CN
21 Yang et al. [99] 2020 AD vs CN, MCI vs CN
22 Perez-Gonzalez et al. [89] 2021 MCI vs CN
23 Pahuja et al. [96] 2018 PD vs CN
24 Ye et al. [91] 2022 AD vs CN, EMCI vs LMCI
25 Divya et al. [84] 2021 CN vs AD, CN vs MCI, MCI vs AD
26 Segovia et al. [86] 2020 CN vs AD
27 Altaf et al. [78] 2018 AD vs CN, AD vs MCI, MCI vs CN, AD vs MCI vs CN
28 Zhang et al. [100] 2021 AD vs MCI, AD vs CN, MCI vs CN, AD vs MCI vs CN
29 Tu et al. [72] 2022 AD vs CN, SMCI vs PMCI
30 Yan et al. [71] 2022 AD vs CN
31 Hao et al. [67] 2020 AD vs CN, LMCI vs CN, EMCI vs LMCI
32 Kong et al. [79] 2022 AD vs CN, MCI vs CN, AD vs MCI, AD vs MCI vs CN
33 Zhang et al. [101] 2023 AD vs CN, sMCI vs pMCI
34 Leng et al. [75] 2023 AD vs CN, SMC vs CN
35 Zhang et al. [74] 2023 AD vs CN, sMCI vs pMCI
36 Zhang et al. [70] 2023 AD vs CN, MCI vs CN, AD vs MCI vs CN
37 Gao et al. [102] 2023 AD vs CN, sMCI vs pMCI
38 Chen et al. [103] 2023 AD vs CN, MCI vs CN, AD vs MCI
39 Ding et al. [104] 2023 AD vs CN, MCI vs CN
40 Ismail et al. [105] 2023 AD vs CN, MCI vs CN, AD vs MCI, AD vs MCI vs CN
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ent and have an explainability component, which would 
allow for clinical practitioners to trust methods that can 
assist in diagnosis of diseases.

3.	 Usage of transfer learning
	   With the limited training data available, there is a 

potential to use transfer learning technique, which allows 
to take a trained model on general domain, for exam-
ple, object recognition and apply it in other domains by 
freezing majority of the weights in neural networks and 
retraining only the last few layers, where the decision is 
being made. This almost always allows models to con-
verge faster to the global minimum of cost function.

4.	 Smart environments
	   Specialized medical equipment, like magnetic reso-

nance tomograph, is extremely expensive and difficult to 
access, which makes the researchers focus on more cost-
effective solutions. One of the proposed future areas is 
smart environments packed with sensors, trackers and 
camaras, which would allow us to detect anomalies in 
behaviors of patients as well as monitor whether dis-
ease is progressing and affecting patients. However, such 
technologies applied to detection problem are limited 
and would still require additional medical tests to pro-
vide diagnosis of disease.

5.	 Data imputation with GANs
	   Generative Adversarial Networks (GAN) [114] are 

great at learning latent space of data distribution and 
can generate realistic samples with features learned 
from training data. In most of the publicly available 
datasets, not every modality is available, frequently 
patients with MRI data do not have PET data. There-
fore, there is a potential to employ these models to gen-
erate (impute) missing data values and solve the data 
imbalance problem.

6.	 EEG data collection in consumer environments
	   Electroencephalograph data is another data modality 

used in early dementia detection. This technology col-
lects brain signals with the help of electrodes attached 
to the patient’s head. Typically, devices which collect 
the data are not portable and require medical personnel 
to administer the process. However, recently more port-
able devices were introduced, which allows patients to 
record EEG signals at home [115]. This is potentially a 
cost-effective solution to detect early dementia, which 
requires minimal medical personnel attention.

5.2 � What types of dementia detection researchers 
focus their research on?

We have collected detection type data from the second 
stage in the research. In Table 12 the data with references 
can be seen.

More than two thirds of the papers (70%) focus on 
binary Alzheimer’s disease detection where the other 
class is cognitive normal (no symptoms and cognitive 
decline), 42.5% of papers use binary classification but 
instead of Alzheimer’s, they try to detect MCI. Even 
smaller fraction of papers (30%) focus on binary clas-
sification between Alzheimer’s disease and MCI. What 
is interesting is that only 15% of papers used multi-class 
classification. Based on the data in sub-section 5.3, multi-
class classification is a challenging problem and requires 
more focus from researchers.

5.3 � What are state‑of‑the‑art methods in detection 
of early dementia in the field of AI/ML/DL?

All the collected AI/ML/DL methods comparison is dis-
played in Table 13, where results are grouped by dementia 
detection type. We compare methods by reported accuracy, 
sensitivity, and specificity, where results are sorted by 
accuracy in each group. In binary AD versus CN, there are 
a couple reported solutions, which reach 100 percent accu-
racy, sensitivity, and specificity. Both solutions are at the 
top of the table, and both use machine learning methods.

In the group of MCI vs CN, we have highest accuracy 
reaching 94% reported in [90] article. Researcher of this 

Table 10   Problems existing in research area identified from reviewed 
literature reviews

# Problem Number of 
mentions

1 Explainability 6
2 Overfitting small datasets 6
3 Noisy, poor-quality data 5
4 Resource inefficient models 5
5 Data imbalance 4
6 Lack of multi-modal methods 3
7 Data leakage 3
8 No standard benchmark 3
9 Long time to label the data 3
10 Hard to select relevant features 3
11 Lack of early dementia detection methods 2
12 Lack of studies in some other regions 2

Table 11   Future research areas identified from reviewed literature 
reviews

# Future research area Number of 
mentions

1 Multi-modal solutions 15
2 Explainability 5
3 Usage of transfer learning 4
4 Smart environments 4
5 Data imputation with GANs 3
6 EEG in consumer environments 2
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article used Support Vector Machine (SVM) and ResNet 
methods to produce quite good results in this classification 
group. The same author in the same paper also reports the 
highest accuracy achieved in the AD vs MCI classification 
group using the same methods.

In the SMCI vs PMCI classification group popular ML 
method SVM [69] is in the lead achieving 97 percent accuracy.

In EMCI vs LMCI classification group, DL method 
GAN is in the lead achieving 87.5 percent accuracy. Com-
paring this group to the previous ones, it looks like it’s a 
more challenging task and still requires research efforts to 
reach better results.

In the only multi-class classification task AD vs MCI 
vs CN both ML solutions have better results. For example, 
SVM based solution - [105] reaching 92.3 accuracy. DL 
solutions fall short, with 3D CNN [79] only reaching 87.5 
percent accuracy. Only 5 papers out of 40 used multi-class 
classification task, which means that this task is very chal-
lenging and it’s hard to reach better results. This problem 
requires more attention from researchers as well as EMCI 
vs CN and LMCI vs CN, which also do not show excel-
lent results (EMCI vs CN, highest accuracy 86.2% by ML 
methods [93] and LMCI vs CN by DL method [88] with 
88.7% accuracy.

PD vs CN classification seems to be showing perfect 
results with highest achieved 98.1% accuracy by ML meth-
ods [96], although the dataset is relatively small only 82 
samples for each class, which could be that models did 
overfit during training.

In PMCI vs CN task we can see that DL methods CNN 
are dominant and reach highest 97.3% accuracy. In SMCI 
vs CN we can see that DL method also reach highest 

accuracy 93.1% and in both task the same paper reports 
these results [87].

In SMC vs CN task we see the highest accuracy reach-
ing 91.3%. Other classification categories have only one 
article sample related, where SMC vs MCI 94.4%, SMC 
vs AD 94.4%, SSCD vs PSCD 72.1%, AD vs VD 85.2%, 
BA vs CN 94.2% accuracies.

Most of the selected articles (75.29%) use ML meth-
ods to provide a diagnosis, probably because of relatively 
small datasets used in the research and 24.71% use DL 
methods. Results are depicted in Fig. 8.

Grouping the data by the method type yields more inter-
esting results. Figure 9 shows the distribution of machine 
learning methods used by the researchers. The most popu-
lar method is SVM and the second most popular method is 
RF, which are the most common and basic ML classifiers 
in the field.

Figure 10 shows the most popular deep learning meth-
ods used by researchers. The most popular methods are 
GANs, that are very good at data generation, 3D 3D CNN 
and CNN, that are very common choice when dealing with 
high-dimensional data. Last most common network type is 
Graph Convolutional Network (GCN) - graph based net-
works with convolution layers in nodes.

5.4 � What modalities are being used in combination 
with neuroimaging to detect early dementia?

We have collected data from both stages in the study of all 
modalities that were mentioned, which are being used in 
one way or another to detect different dementias. The high-
level overview can be seen in Fig. 11. There are four main 

Table 12   Dementia detection 
types researchers investigate

Dementia detection type References #

AD vs CN [ 67, 68, 70–75, 77–79, 82–87, 90–92, 94, 95, 99–105 ] 70% (28/40)
MCI vs CN [70, 73, 78, 79, 82–85, 89, 90, 92, 94, 99, 100, 103–105] 42.5% (17/40)
AD vs MCI [73, 78, 79, 82–84, 90, 92, 94, 100, 103, 105] 30% (12/40)
SMCI vs PMCI [66, 69, 72, 74, 85, 98, 101, 102] 20% (8/40)
AD vs MCI vs CN [70, 78, 79, 94, 100, 105] 15% (6/40)
EMCI vs LMCI [67, 81, 88, 91] 10% (4/40)
EMCI vs CN [88, 93, 97] 7.5% (3/40)
LMCI vs CN [67, 88] 5% (2/40)
PD vs CN [76, 96] 5% (2/40)
CN vs PMCI [87, 95] 5% (2/40)
CN vs SMCI [87, 95] 5% (2/40)
SMC vs CN [75, 83] 5% (2/40)
SMC vs MCI [83] 2.5% (1/40)
SMC vs AD [83] 2.5% (1/40)
SSCD vs PSCD [66] 2.5% (1/40)
AD vs VD [80] 2.5% (1/40)
BA (Brain-Atrophy) vs CN [94] 2.5% (1/40)
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Table 13   Comparison of AI/ML/DL methods used by the researchers

Detection type AI/ML/DL methods Dataset ACC​ SEN SPE Ref

AD vs CN Hyperparameter Tuning Random Forest 
Ensemble Classifier (HPT-RFE), 
SVM, DBN (Deep Belief Network)

ADNI (18 AD, 19 CN) 100% 100% 100% [82]

Latent Dirichlet Allocation (LDA), 
K-Neasers Neighbours (KNN), Naïve 
Bayes, SVM

ADNI (35 AD, 35 CN) 100% 100% 100% [77]

Ensemble of CNN ADNI (45 AD, 56 CN) 99% - - [104]
CNN ADNI (186 AD, 226 CN) 98.2% 78.7% 98.7% [87]
Fully Connected Network (FCN) with 

Pyramid Squeeze (PS) attention, 
Multi Layer Perceptron (MLP)

ADNI (309 AD, 241 CN) 98.1% 96.8% 95.9% [71]

3D CNN ADNI (45 AD, 57 CN) 97.9% 98.6% 98.4% [103]
SVM, KNN, Decision Tree (DT), 

Ensemble with AdaBoost
ADNI (92 AD, 90 CN) 97.8% 100% 95.6% [78]

3D CNN ADNI (184 AD, 254 CN) 97.6% 97.2% 98.2% [75]
ResNet, Robust Energy-based Least 

Squares Twin Support Vector 
Machine (RELS-TSVM)

ADNI (100 AD, 100 CN) 97% 97% 97% [90]

Random Forest Ensemble (RFE), 
Genetic Algorithm (GA), Logistic 
Regression (LR), SVM, Random 
Forest (RF), Extreme Gradient 
Boosting (XGB)

ADNI (171 AD, 347 CN) 96.8% 92.8% 98.7% [84]

DT, AdaBoost, Gradient Boosting 
Classifier (GBC), Random Forest 
Classifier (RFC), LDA

ADNI (100 AD, 100 CN) 96.7% 96.7% 100% [94]

Graph Neural Network (GNN) ADNI (215 AD, 246 CN) 96.68% 99.1% 94.4% [74]
CNN, Artifial Neural Network (ANN) ADNI (78 AD, 100 CN) 96% 97% 93% [72]
3D ResNet ADNI (215AD, 246CN) 94.6% 92.1% 97.2% [101]
Hybrid 3D CNN Transformer, GAN ADNI (352 AD, 427 CN) 94.4% 93% 95.5% [102]
SVM, MOGOA ADNI (511 AD, 535 CN) 94.4% 95% 94% [105]
Principal Component Analysis (PCA), 

Radial Basis Function (RBF)-SVM
ADNI (100 AD, 100 CN) 94% 95% 93% [92]

Multi Kernel Learning (MKL)-SVM ADNI (38 AD, 40 CN) 94% - - [100]
MKL-SVM, RF, Multi Task Learning 

(MTL)
ADNI (201 AD, 263 CN) 93.7% 95.1% 91.8% [67]

3D CNN ADNI (111 AD, 130 CN) 93.2% 91.4% 95.4% [79]
AD vs CN 3D CNN ADNI (93 AD, 100 CN) 93.2% 92.5% 93.9% [95]

GAN with attention, Partial Multi-view 
Clustering (PVC), Unified Embeding 
Alignment Framework (UEAF), 
Generative Adversarial Imputation 
Network (GAIN)

ADNI (160 AD, 210 CN) 93.2% 92.9% 93.4% [91]

RF, MOGOA ADNI (511 AD, 535 CN) 92.8% 94.2% 90.6 % [105]
3DMR-PCANet, 3DResNet-10, SVM ADNI (34 AD, 50 CN) 92% 100% 80% [83]
3D CNN ADNI (129 AD, 110 CN) 91% 91% 91% [70]
SVM ADNI (52 AD, 52 CN) 90.7% 90.1% 88.1% [73]
Hybrid 3D CNN Transformer, GNN OASIS-3 (174 AD, 171 CN) 88.4% 84.6 % 92.3 % [102]
Sample weighting based Multi-modal 

Rank Minimization (SPMRM), MTL, 
MKL

ADNI (160 AD, 211 CN) 88% 94.3% 80% [85]

Softmax classifier, Multi-Objective 
Grasshopper Optimization Algorithm 
(MOGOA)

ADNI (511 AD, 535 CN) 87.7% 90% 85.6% [105]

SVM ADNI (20 AD, 32 CN) 86% 83.3% 90.3% [99]
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Table 13   (continued)

Detection type AI/ML/DL methods Dataset ACC​ SEN SPE Ref

Auto-encoder ADNI (185 AD, 90 CN) 83.6% - - [68]
Partial Least Square (PLS), SVM Closed source (21 AD, 22 CN) 82.1% 80.9% 89% [86]

MCI vs CN ResNet, RELS-TSVM ADNI (100 MCI, 100 CN) 94% 97% 91% [90]
SVM, MOGOA ADNI (571 MCI, 535 CN) 93.2% 96% 89.2% [105]
3DMR-PCANet, 3DResNet-10, SVM ADNI (50 CN, 35 MCI) 92% 93.3% 90% [83]
SVM, KNN, DT, Ensemble with 

AdaBoost
ADNI (105 MCI, 90 CN) 91.8% 90% 93.3% [78]

Softmax classifier, MOGOA ADNI (571 MCI, 535 CN) 91.5% 93.6% 89.4% [105]
RF, Extra Trees Classifier (ETC), 

SVM, ANN, Gaussian Process (GP)-
RBF

ADNI (30 MCI, 30 CN) + Closed 
Source (11 MCI, 12 CN)

91.3% - - [89]

HPT-RFE, SVM, DBN ADNI (65 MCI, 19 CN) 91% 100% 60% [82]
RFE, GA, LR, SVM, RF, XGB ADNI (558 MCI, 347 CN) 89.3% 95.1% 80% [84]
RF ADNI (571 MCI, 535 CN) 89% 91% 88% [105]
3D CNN ADNI (125 MCI, 57 CN) 87.8% 92.4% 92.6% [103]
DT, AdaBoost, GBC, RFC, LDA ADNI (100 MCI, 100 CN) 86.7% 85% 88.3% [94]
3D CNN ADNI (129 MCI, 130 CN) 86.5% 94.3% 81.6% [79]
SPMRM, MTL, MKL ADNI (542 MCI, 211 CN) 84.1% 94.3% 55.2% [85]
Ensemble of CNN ADNI (123 MCI, 56 CN) 81.6% - - [104]
MKL-SVM ADNI (42 MCI, 40 CN) 81% - - [100]
SVM ADNI (27 MCI, 32 CN) 80.2% 70.4% 89.9% [99]
PCA, RBF-SVM ADNI (100 MCI, 100 CN) 76.5% 78% 75% [92]
SVM ADNI (52 MCI, 52 CN) 74.7% 73.6% 74.4% [73]
3D CNN ADNI (125 MCI, 110 CN) 71.2% 74.6% 67.9% [70]

AD vs MCI ResNet, RELS-TSVM ADNI (100 AD, 100 MCI) 97.5% 96% 99% [90]
HPT-RFE, SVM, DBN ADNI (18 AD, 65 MCI) 95% 100% 80% [82]
3DMR-PCANet, 3DResNet-10, SVM ADNI (35 MCI, 34 AD) 95% 90% 100% [83]
3D CNN ADNI (45 AD, 125 MCI) 92.8% 97.2% 96.2% [103]
RFE, GA, LR, SVM, RF, XGB ADNI (558 MCI, 171 AD) 91.4% 96.5% 98.1% [84]
SVM, MOGOA ADNI (511 AD, 535 CN) 90% 89.2% 93.3% [105]
Softmax classifier, MOGOA ADNI (511 AD, 535 CN) 89.4% 91% 88% [105]
MKL-SVM ADNI (38 AD, 42 MCI) 89% - - [100]
3D CNN ADNI (111 AD, 129 MCI) 85.6% 81.2% 95.5% [79]
SVM, KNN, DT, Ensemble with 

AdaBoost
ADNI (92 AD, 105 MCI) 85.3% 94.2% 75% [78]

DT, AdaBoost, GBC, RFC, LDA ADNI (100 AD, 100 MCI) 84.2% 83.3% 85% [94]
RF, MOGOA ADNI (511 AD, 535 CN) 83% 85% 78.2% [105]
PCA, RBF-SVM ADNI (100AD, 100 MCI) 75.5% 71% 80% [92]
SVM ADNI (52 AD, 52 MCI) 75.5% 77.5% 78.5% [73]

SMCI vs PMCI SVM ADNI (62 SMCI, 18 PMCI) 97% 100% 95% [69]
CNN, ANN ADNI (117 SMCI, 53 PMCI) 87% 91% 87% [72]
SVM, RF ADNI (167 SMCI, 24 PMCI) 85.5% 76.2% 88.7% [98]
SPMRM, MTL, MKL ADNI (56 SMCI, 43 PMCI) 78.8% 74.4% 83.9% [85]
GAN with Representation Learning ADNI (234 CN, 629 MCI) 78% - - [66]
Hybrid 3D CNN Transformer, GAN ADNI (342 sMCI, 234 pMCI) 77.8% 75.4% 79.6% [102]
3D ResNet ADNI (238 sMCI, 151 pMCI) 77.1% 68.1% 81.8% [101]
GNN ADNI (211 sMCI, 120 pMCI) 77% 51.9% 89.37% [74]

EMCI vs LMCI GAN with attention, PVC, UEAF, 
GAIN

ADNI (272 EMCI, 187 LMCI) 87.5% 93.5% 80.1% [91]

Graph Convolutional Network (GCN) ADNI (40 LMCI, 77 EMCI) 86.3% 83.1% 92.5% [88]
GAN ADNI (124 EMCI, 133 LMCI) 85.2% 79.7% 91.1% [81]
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categories of modalities: neuroimaging, neuropsychological/
psychiatric evaluation, clinical data, and others. The neuro-
imaging group of modalities contains MRI, DWI, Single-
Photon Emission Computed Tomography (SPECT), and PET. 
There are a few other subtypes of MRI, like T1-weighted 
(T1w), T2-weighted (T2w), functional MRI (fMRI), and 
PET, like FDG-PET, Flute/PiB-PET, Amyloid PET.

The neuropsychological/psychiatric evaluation group of 
modalities consists of all different identified cognitive func-
tion evaluation tests used in clinical practice in this study. 
Another group of modalities is biomarkers. It includes such 
modalities as blood, blood plasma or Cerebrospinal Fluid 
(CSF), saliva and others. All modalities in the second stage 
of research collected can be seen in Fig. 12.

Most popular modalities are T1w MRI (35 of 40 papers 
used), FDG-PET (22 of 40 papers used), MMSE (7 of 40 

papers used), fMRI (6 of 40 papers used), genetic data (6 
of 40 papers used), demogpahic data (6 of 40 papers used).

All combinations of modalities that papers used are dis-
played in Table 14. From the table it is clear that the most 
popular combination of modalities is two neuroimaging 
modalities (T1w MRI and FDG-PET), where one third of 
the articles collected used this combination.

Grouping all combinations by the category of modality 
would give a better understanding of what combinations 
researchers use in multi-modal solutions. Grouped data is 
provided in Table 15. Many papers (55%) used only neu-
roimaging modalities in proposed early dementia detection 
methods. It can be observed that the other combinations of 
groups of modalities with neuroimaging are cognitive data 
(15%) or genetic data (10%). Less popular are biomarkers 
and demographic data.

Table 13   (continued)

Detection type AI/ML/DL methods Dataset ACC​ SEN SPE Ref

MKL-SVM, RF, MTL ADNI (272 EMCI, 187 LMCI) 73.8% 90.5% 48.5% [67]
AD vs MCI vs CN SVM, MOGOA (ADNI 511 AD, 571 MCI, 535 CN) 92.3% - - [105]

Softmax classifier, MOGOA (ADNI 511 AD, 571 MCI, 535 CN) 90.1% - - [105]
RF, MOGOA (ADNI 511 AD, 571 MCI, 535 CN) 89% - - [105]
MKL-SVM ADNI (38 AD, 42 MCI, 40 CN) 88% - - [100]
3D CNN ADNI (111 AD, 129 MCI, 130 CN) 87.5% - - [79]
DT, AdaBoost, GBC, RFC, LDA ADNI (100 AD, 100 MCI, 100 CN) 86.7% - - [94]
SVM, KNN, DT, Ensemble with 

AdaBoost
ADNI (90 CN, 105 MCI, 92 AD) 79.8% - - [78]

3D CNN ADNI (129 AD, 125 MCI, 110 CN) 64% - - [70]
EMCI vs CN Genetic-Evolutionary Random Forest 

(GERF), SVM, RF
ADNI (37 EMCI, 36 CN) 86.2% - - [93]

Multi-Task Feature Selection (MTFS)-
gLASSO, GCN

ADNI (105 EMCI, 105 CN) 84.1% 86.5% 81.3% [97]

GCN ADNI (77 EMCI, 97 CN) 82.7% 77.6% 89% [88]
LMCI vs CN GCN ADNI (40 LMCI, 97 CN) 88.7% 83.5% 97.5% [88]

MKL-SVM, RF, MTL ADNI (187 MCI, 211 CN) 78.4% 85.8% 70.1% [67]
PD vs CN GA, Self-adaptive Resource Allocation 

Network (SRAN), Extreme Learning 
Machine (ELM), SVM

PPMI (82 PD, 82 CN) 98.1% 98.7% 97.7% [96]

Softmax classifier, CNN PPMI (59 CN, 73 PD) 90.4% 86% 93.5% [76]
PMCI vs CN CNN ADNI (166 SMCI, 226 CN) 97.3% 97.8% 96.7% [87]

3D CNN ADNI (76 PMCI, 100 CN) 82.9% 81% 84.3% [95]
SMCI vs CN CNN ADNI (225 SMCI, 226 CN) 93.1% 92.6% 93.5% [87]

3D CNN ADNI (128 PMCI, 100 CN) 64% 63% 67.3% [95]
SMC vs CN 3DMR-PCANet, 3DResNet-10, SVM ADNI (50 CN, 26 SMC) 91.3% 100% 75% [83]

3D CNN ADNI (98 SMC, 254 CN) 81.6% 72.1% 85.2% [75]
SMC vs MCI 3DMR-PCANet, 3DResNet-10, SVM ADNI (26 SMC, 35 MCI) 94.4% 100% 87.5% [83]
SMC vs AD 3DMR-PCANet, 3DResNet-10, SVM ADNI (26 SMC, 34 AD) 94.4% 87.5% 100% [83]
SSCD vs PSCD GAN with Representation Learning CLAS (76 SSCD, 52 PSCD) 72.1% 75% 72.1% [66]
AD vs VD ANN, SVM, daptive Neuro Fuzzy 

Inference System (ANFIS)
Closed Source (22 AD, 27 VD, 15 

mixed)
85.2% 82% 88.5% [80]

Brain Atrophy (BA) vs CN DT, AdaBoost, GBC, RFC, LDA Closed Source (20 BA, 20 CN) 94.2% - - [94]

ACC​ Accuracy, SEN Sensitivity, SPE Specificity
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Grouping combinations of modalities by the count of 
modalities used shows in Table 16 an interesting observa-
tion, that most (62.5%) researchers only used two modali-
ties in their research to detect dementia and only minority 
used more than two modalities. There is even one case 
[82], where 9 modalities were used (3 neuroimaging, 5 
cognitive tests and demographic data).

5.5 � How is model performance evaluated 
and validated?

5.5.1 � Evaluation

We have collected data from research articles about different 
model performance evaluation metrics used. We can see the 
results in Table 17.

We can see that all papers used accuracy, most used 
specificity (82.5%) and sensitivity (82.5%), almost half 
used area under curve (45%) metrics to evaluate devel-
oped models against others. There are other metrics not 
so frequently measured like: F1 score (17.5%) and preci-
sion (17.5%), as well as rarely used Matthew’s correlation 
coefficient (2.5%), negative predictive value (2.5%) and 
geometric mean of sensitivity and specificity (2.5%).

Below is the list of metrics, where we provide details about 
how the metric is calculated and what it allows to evaluate: 

1.	 Accuracy
	   In binary classification accuracy is describing how 

many samples model classified correctly both true nega-
tive and true positive samples from the whole popula-
tion. True positive is a sample, which had a positive 
value associated with it and model correctly assigned 
the class it belongs to. For example, patient has dementia 
and model correctly detects it. True negative is a sam-
ple, which had a negative value associated with it and 
model again correctly assigns the class to it. For exam-

Fig. 8   Types of AI methods used by researchers

Fig. 9   Popular machine learning methods used by researchers

Fig. 10   Popular deep learning methods used by researchers
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ple, patient does not have dementia and models does 
not detect it. There are false positive and false negative 
samples, where false positive is when model incorrectly 
assigns a negative class to a positive sample (patient 
has dementia, but model failed to detect it) and false 
negative, where vice versa (patient does not have demen-
tia, but model detected it). Therefore, accuracy can be 
expressed as an Eqs. (1) and (2) below: 

where TP - true positive, TN - true negative, FP - false 
positive and FN - false negative. In Multi-class classifi-
cation accuracy is just a rate of how many classifications 
were correct from the overall and can be expressed as 
an equation below: 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

Fig. 11   All in this study identified modalities that are being used in dementia detection

Fig. 12   Modalities collected in 
second stage of research
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2.	 Sensitivity and specificity
	   Sensitivity and specificity are frequently calculated, 

when it is important that models are reliable in terms 
of decisions they make. Sensitivity represents the true 
positive rate, which is a number of true positive sam-

(2)Accuracy =
# of correct classifications

# of all classifications

ples divided by the whole population, where specific-
ity is a true negative rate, which is just a number of 
true negative samples divided by the whole popula-
tion. Equation for sensitivity (3) and specificity (4) 
are shown below: 

(3)Sensitivity(TPR) =
TP

TP + FN

Table 14   Combinations of modalities researchers used

Combination of modalities References #

T1w MRI + FDG-PET [66–68, 73, 75, 79, 81, 90, 92, 95, 
100, 101, 105]

32.5% (13/40)

T1w MRI + fMRI [69, 83, 97] 7.5% (3/40)
T1w MRI + Genetic [98] 2.5% (1/40)
fMRI + Genetic [93] 2.5% (1/40)
fMRI + Demographic [88] 2.5% (1/40)
T1w MRI + SPECT + CSF [76] 2.5% (1/40)
T1w MRI + FDG-PET + Flute/PIB-PET + MMSE + GDS + CDR + FAQ + NPIQ + 

Demographic
[82] 2.5% (1/40)

T1w MRI + FDG-PET + Genetic + CDR + ADAS + RAVLT + Demographic [103] 2.5% (1/40)
T1w MRI + T2w MRI [94] 2.5% (1/40)
T1w MRI + T2w MRI + FDG-PET [102] 2.5% (1/40)
T1w MRI + FDG-PET + MMSE [74] 2.5% (1/40)
T1w MRI + FDG-PET + CSF [70] 2.5% (1/40)
T1w MRI + FDG-PET + Genetic [87] 2.5% (1/40)
fMRI + DTI [80] 2.5% (1/40)
T1w MRI + FDG-PET + Flute/PIB-PET + Amyloid PET + Genetic [85] 2.5% (1/40)
T1w + ADAS [77] 2.5% (1/40)
T1w + MMSE + ADAS [104]
FDG-PET + Flute/PIB-PET [99] 2.5% (1/40)
T1w MRI + DWI + MMSE + CDR [89] 2.5% (1/40)
T1w MRI + Plasma + Serum + CSF + RNA [96] 2.5% (1/40)
T1w MRI + FDG-PET + Amyloid PET [91] 2.5% (1/40)
T1w MRI + MMSE [84] 2.5% (1/40)
T1w MRI + Amyloid PET [86] 2.5% (1/40)
T1w MRI + FAQ + NPIQ + GDS [78] 2.5% (1/40)
T1w MRI + Demographic + Genetic + MMSE [72] 2.5% (1/40)
T1w MRI + Demographic + MMSE [71] 2.5% (1/40)

Table 15   Combinations of 
category groups of modalities

Combination References #

Neuroimaging [66–69, 73, 75, 79–81, 83, 86, 90–92, 94, 95, 
97, 99–102, 105]

55% (22/40)

Neuroimaging + Cognitive tests [74, 77, 78, 84, 89, 104] 15% (6/40)
Neuroimaging + Genetic [85, 87, 93, 98] 10% (4/40)
Neuroimaging + Biomarkers [70, 76, 96] 7.5% (3/40)
Neuroimaging + Demographic + Cognitive 

tests
[71, 74, 82] 7.5% (3/40)

Neuroimaging + Demographic + Genetic + 
Cognitive tests

[72, 103] 5% (2/40)

Neuroimaging + Demographic [88] 2.5% (1/40)
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3.	 Negative Predictive Value and Precision (Positive Pre-
diction Value)

	   Negative and Positive Predictive Value (Precision) 
metrics are very similar to Sensitivity and Specificity. 
The only difference is that these metrics calculate prob-
abilities whether model decision positive or negative is 
really positive or negative. Equation for Negative Pre-
dictive Value (5) and Positive Predictive Value (6) are 
provided below: 

4.	 Area Under Curve
	   In classification, Area Under Curve (AUC) is fre-

quently used to determine the performance of model 
and it is calculated as an integral of Receiver Operating 
Characteristic Curve (ROC) and x axis. ROC curve rep-
resents how well model classifies data at each sensitivity 
and specificity rate point. AUC allows to aggregate the 
performance values. Therefore, it provides an insight 
whether model classifies random value more positively 

(4)Specificity(TNR) =
TN

TN + FP

(5)Negative Predictive Value =
TN

TN + FN

(6)Positive Predictive Value =
TP

TP + FP

or negatively. The value of AUC equal to 1 means the 
model is 100% correct. Equation (7) for AUC is repre-
sented below: 

5.	 F1 Score
	   The F1 metric is a harmonic mean of positive pre-

diction value (precision) and sensitivity (also known as 
recall). It is a common performance metric to capture 
how well model can detect true positive cases and be 
accurate with the decision. The Eq. (8) for F1 score is 
shown below: 

 where PPV - positive predictive value.
6.	 Geometric Mean of Sensitivity and Specificity
	   The geometric mean is another metric sometimes 

used by researchers. It is defined as a square root of 
the product of all values. In this sense, geometric mean 
finds the central tendency of sensitivity and specificity 
or the “compromise” of these two metrics, which can be 
another performance indicator.

7.	 Matthew’s correlation coefficient
	   Matthew’s correlation coefficient is an extended ver-

sion of F1 score, which also captures the true negative 
rate in the calculations. The equation for the metric (9) 
is shown below: 

5.5.2 � Validation

In terms of validation of model performance, we have also 
collected data in the second stage of study from collected 
papers. Results are provided in Table 18.

(7)AUC of ROC = ∫
1

0

Sensitivity(Specificity−1(x))dx

(8)F1 = 2 ∗
PPV ∗ Sensitivity

PPV + Sensitivity

(9)

MCC =
TP ∗ TN − FP ∗ FN

√

(TP + FP)(TN + FN)(TN + FP)(TN + FN)

Table 16   Count of modalities researchers used

Count of 
modalities 
used

References #

2 modalities [66–69, 73, 75, 77, 79–81, 83, 84, 
86, 88, 90, 92–95, 97–101, 105]

62.5% (25/40)

3 modalities [70, 71, 74, 76, 87, 91, 102, 104] 20% (8/40)
4 modalities [72, 74, 78, 89] 10% (4/40)
5 modalities [85, 96] 5% (2/40)
7 modalities [103] 2.5% (1/40)
9 modalities [82] 2.5% (1/40)

Table 17   Evaluation metrics 
used in articles

Evaluation metric References #

Accuracy [66–104] 100% (40/40)
Sensitivity [66, 67, 69–88, 90–92, 94–99, 101–103] 82.5% (33/40)
Specificity [66, 67, 69–88, 90–92, 94–99, 101–103] 82.5% (33/40)
Area Under Curve [66, 67, 69, 70, 72–75, 81, 83, 85, 88, 89, 

91, 95, 98, 101, 102]
45% (18/40)

F1 Score [66, 70, 71, 76, 83, 87, 94] 17.5% (7/40)
Precision (Positive Predictive Value) [69, 80, 87, 94, 98, 100, 103] 17.5% (7/40)
Geometric Mean of Sensitivity and Specificity [76] 2.5% (1/40)
Negative Predictive Value [80] 2.5% (1/40)
Matthew’s correlation coefficient [71] 2.5% (1/40)
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Most of the papers (75%) use cross-validation to validate 
model results, 17.5% of papers used random subsampling 
of dataset and only 7.5% used separate test set to validate 
the results. K-fold validation type is used to reduce bias due 
to available small datasets. Data in public datasets is very 
limited, therefore there is a need to try to overcome this issue 
by introducing cross-validation. The most popular cross-val-
idation type is k-fold. This validation type can be understood 
essentially as partitioning original dataset into k number of 
partitions where we use only one of the partitions for valida-
tion and remaining for training. Validation is then repeated k 
times, so we get k models and their validation results. In the 
end, we can average the k models results and get an overall 
estimate of performance of the developed model.

While random subsampling is technique that exists, it is 
not ideal to use it because of risk to introduce bias. Select-
ing samples from original dataset for training and validation 
may be biased simply because of randomness of the subsam-
pling method. Some samples could be more closely related 
in the latent feature space than others and if these samples 
get used in both training and validation, the generalizability 
of model decreases. The best possible validation is to use 
unseen data or separate dataset, which has similar distribu-
tion to the one used in training. This way, we can prevent 
bias introduction and see how well the model generalizes in 
the trained domain.

5.6 � What datasets researchers used in their studies?

In the collected data from the second stage, we have 
also noted the datasets that researchers used. Collected 
data is provided in Table 19. We can see that 87.5% of 

articles used Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI), 10% used closed source dataset which was 
provided by the third party like a hospital, which accepted 
to participate in research. Only 2 articles used Parkinson’s 
Progression Markers Initiative (PPMI) dataset. Only 1 
article used Australian Imaging Biomarkers and Lifestyle 
Study of Ageing (AIBL), Chinese Longitudinal Aging 
Study (CLAS) and Open Access Series of Imaging Stud-
ies (OASIS) datasets. 

1.	 ADNI
	   Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

[112] dataset was first introduced in 2004. The dataset 
focuses on Alzheimer’s disease and its prodromal stage 
research (MCI). It contains many different modalities 
like: T1w MRI, FDG-PET, Flute/Fib-PET, CSF, genetic 
data, neuropsychological tests, and demographics. It is 
evidently one of the highest contributing datasets avail-
able in the research area. All patients are from United 
States of America.

2.	 PPMI
	   Parkinson’s Progression Markers Initiative (PPMI) [116] 

dataset is like ADNI, but more focused on Parkinson’s dis-
ease. It was first introduced in 2010 and contains a few 
different clinical, neuroimaging, genetic and biomarkers 
data. The patients are from 11 different countries.

3.	 AIBL
	   The Australian Imaging, Biomarker & Lifestyle Flag-

ship Study of Ageing (AIBL) [117] is another dataset, 
which contains data and focuses on Alzheimer’s disease 
like ADNI. The dataset was first announced in 2006. All 
patients are from Australia.

4.	 CLAS
	   Chinese Longitudinal Aging Study (CLAS) [118] 

dataset was first introduced in 2011 and it contains 
demographic, neuropsychiatric, genetic data, biomark-
ers, and T1w MRI scans of patients from China.

5.	 OASIS
	   The Open Access Series of Imaging Studies (OASIS) 

[119] is a multimodal neurimaging dataset, which was 
first released in 2007. It’s purpose it to provide open 
access to neuroimaging data. It contains longitudi-
nal multimodal neuroimaging, clinical, cognitive, and 

Table 18   Validation types used 
by researchers

Validation type References #

Cross validation Leave-One-Out [88, 92] 75% (30/40)
k-fold 10-fold [67, 68, 72, 73, 77, 79, 80, 84–87, 90, 91, 

95, 99, 105]
9-fold [69]
5-fold [70, 71, 74, 75, 78, 94, 97, 100, 102–104]

Random Split [76, 81–83, 93, 96, 101] 17.5% (7/40)
Separate test set [66, 89, 98] 7.5% (3/40)

Table 19   Different datasets used by the researchers

Dataset References #

ADNI [66–75, 77–79, 81–85, 
87–95, 97–104]

87.5% (35/40)

Closed source [80, 86, 89, 94] 10% (4/40)
PPMI [76, 96] 5% (2/40)
AIBL [66] 2.5% (1/40)
CLAS [66] 2.5% (1/40)
OASIS [102] 2.5% (1/40)
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biomarker data of patiets. There are 4 versions of the 
dataset. The newest one is OASIS-4, which focuses on 
memory disorders and dementia.

5.7 � What are the commonly used pre‑processing 
and feature extraction from neuroimages 
techniques?

We have collected from the second stage in research all 
pre-processing and feature extraction techniques used by 
the researchers. Results are listed in Table 20. We also col-
lected the software which was used and grouped it by the 
neuroimaging modalities.

Pre-processing and feature extraction of structural MR 
images usually contains the same steps as PET images, 
where fMRI has additional pre-processing steps to average 
out motion and timings due to the procedure of the scan, 
where scans are taken in a long period of time and it is 
impossible for patient to stay still during the whole proce-
dure. The same applies to diffusion neuroimaging (DWI and 
DTI). The only distinguishable differences between fMRI 
and DWI, DTI are types of features, which are extracted. 
For fMRI (in this study) researchers calculated average time 
series signal for segmented brain regions, where for diffu-
sion images they were calculating more specific features 
like eigenvalues and Fractional Anisotropy (FA). All the 
pre-processing, feature extraction techniques and software 
involved in the process are briefly described below:

Pre-processing techniques: 

1.	 Intensity normalization
	   Intensity normalization also known as bias field cor-

rection is a technique which allows to eliminate bias field, 
which is a “low-frequency and very smooth signal that 

corrupts MRI images specially those produced by old MRI 
machines.” [120]. Using images which are not bias field 
corrected will probably yield bad results, due to gray color 
intensities in pixels being disrupted due to this signal.

2.	 Spacial normalization
	   Spacial normalization or registration is a step, which 

allows to align one scan with another due to human 
brain/head sizes and shapes being different. This step 
involves aligning scan with the template scan (usually an 
average template obtained specifically for the study) or a 
standard template like MNI (McConnel Brain Imaging) 
or ICBM (International Consortium for Brain Mapping) 
[121], which maps the location of brain in the scan to 
the location in the template. This way, all human brains 
in different scans appear in the same location.

3.	 Skull stripping
	   Skull stripping or brain extraction is a procedure 

where unwanted tissues, skull, eyes etc. are removed 
from the scan to produce a volume that contains only the 
brain tissue. This allows to reduce the scan complexity 
and size, which makes the other processing steps faster 
due to smaller size of data in the scan.

4.	 Noise reduction or smoothing
	   This step is optional, but sometimes performed to 

remove noise from the images by applying smoothing 
filters like anisotropic diffusion, Gaussian filter, median 
filter, or other statistical filters.

5.	 Transformations
	   Transformations can be applied to neuroimages to con-

vert to different coordinates (Talairach), Mean Regional 
Homogeneity (mReHo) that “measure the regional syn-
chronization degree of fMRI time course” [122], Discrete 
Wavelet can be used to fuse the different signals in data 
[90]. All the transformations allow us to later extract dif-
ferent information from the images/signals.

Table 20   Common pre-processing and feature extraction techniques identified in selected articles

Data modality Pre-processing Feature extraction techniques Software

T1w MRI Intensity normalization. Spatial normalization. 
Skull stripping. Noise reduction or 
smoothing. Transformations (Mean Regional 
Homogeneity, Discrete Wavelet, Talairach). 
Segmentation.

Average intensity for each voxel in segmented 
regions of interest. Surface extraction. 
Feature extraction with Neural Networks 
(3DMR-PCANet, 3DResNet-10, CNN, 3D 
CNN, GAN, FCN).

FreeSurfer FSL MIPAV

FDG-PET, Flute/
PiB-PET, 
Amyloid-PET

FreeSurfer FSL

fMRI Time volumes removal. Slice timing 
correction. Motion correction. Brain 
extraction. Spatial normalization. Smoothing. 
Filtering. Transformations (Mean Regional 
Homogeneity). Segmentation

Average time series signal for segmented ROI SPM12 SPM8 DPABI 
GRETNA AFNI

DWI, DTI Intensity normalization. Spacial normalization. 
Motion correction. Brain extraction. Denoise

Eigenvalues computation for each voxel. 
Tract-based spatial statistics (TBSS) for 
Fractional Anisotropy (FA) and Mean 
Diffusivity (MD).

FreeSurfer FSL AFNI
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6.	 Segmentation
	   Segmentation step is one of the most frequent steps 

involved in the processing pipeline, when dealing with 
hand-crafted features. Segmenting images into Gray Matter 
(GM), White Matter (WM) or Cerebrospinal Fluid (CSF) 
layers allows to express these features later as numbers by 
calculating voxel intensities. There are anatomical atlases, 
which are templates for pre-processed brain to be subdi-
vided into ROI (Region of Interest), for example, AAL 
(Automated Anatomical Labelling) atlas [123]. Then each 
region can be analyzed separately or used to extract features.

7.	 Motion correction
	   Due to the long fMRI capturing procedure it is impos-

sible for patients to stay still the whole time. Therefore, in 
the images this will look as if the patient moved their head 
from slice to slice. This can be fixed by using a reference 
image, for example, in the first slice and then capturing 
in subsequent slices whether the brain has been translated 
in the space from reference, then motion can be fixed by 
translating the brain volume to the reference slice location.

8.	 Filtering
	   There are different filtering techniques that researchers 

use to clean and separate signals in fMRI data like lin-
ear detrending, high/low pass filtering or other temporal 
filtering techniques. Essentially, filter selection depends 
on the purpose of the pre-processing step, whether we 
want to remove low frequencies (high pass filter) or high 
frequencies (low pass filter), or to remove linear drifts in 
signal (linear detrend). Filtering data allows researchers 
to analyze the signals in different ways.

Feature extraction techniques: 

1.	 Voxel average intensity
	   Voxel is an atomic unit in 3D space. Typically, seg-

mented brain regions are analyzed by measuring voxel 
intensity values in each ROI. Then the average value is 
saved as a feature.

2.	 Surface extraction
	   In some cases, researchers used brain surface extrac-

tion tools to generate surface meshes to estimate corti-
cal thickness as a feature in detection of dementia. Or 
extracts a Gray Matter (GM) or White Matter (WM) 
features, that can be used as features.

3.	 Features from neural networks
	   These types of feature extraction techniques are the least 

common among researchers as previously mentioned. Typi-
cally, some type of CNN is used to capture high level features 
from images or 3D volumes of brains. For example, 3DMR-
PCANet, 3DResNet-10, CNN, 3D CNN, GAN, FCN.

4.	 Average time series
	   This average time series signal is exactly the same 

as average voxel intensity values. The only difference 

is that this time series signal represents average voxel 
intensities changing in time due to fMRI data being 4D 
(having temporal component).

5.	 Eigenvalues
	   Diffusion Tensor Imaging allows to capture the direc-

tionality and magnitude of water diffusion. Diffusion 
tensors are diagonal, that contains three nonzero ele-
ments, which are called eigenvalues [124].

6.	 Tract-based spacial statistics (TBSS) for Fractional Ani-
sotropy (FA) and Mean Diffusivity (MD)

	   Tract-based spacial statistics is a whole process of pre-
processing diffusion neuroimaging data, from spacial nor-
malization to segmentation to acquiring data from fractional 
anisotropy or mean diffusivity metrics at each voxel. Frac-
tional anisotropy is a value, which is calculated from the 
eigenvalues. It measures the degree of anisotropy of a diffu-
sion at each voxel in the scan. This metric ranges from 0 to 
1, where 0 represents isotropic diffusion and 1 highly direc-
tional. Mean diffusivity is another diffusion degree describ-
ing metric, which does not have directional component. This 
metric is calculated as an average of all eigenvalues.

Software: 

1.	 FreeSurfer [109] - open-source tool to analyze and visual-
ize structural, functional and diffusion neuroimaging data.

2.	 FSL [108] - library of tools to analyze structural, func-
tional and diffusion neuroimaging data.

3.	 SPM12 and SPM8 [125] - are libraries to analyze and 
visualize functional neuroimaging data.

4.	 MIPAV [126] - is a toolbox which contains tool to ana-
lyze and visualize structural neuroimaging data.

5.	 DPABI [127] - library of tools to process and analyze 
functional neuroimaging data.

6.	 GRETNA [128] - another library to process and analyze 
functional neuroimaging data.

7.	 AFNI [129] - toolbox to analyze and visualize functional 
and diffusion neuroimaging data.

5.8 � What are the key issues in detection  
of early dementia?

Based on the data collected from the papers, we think these 
are the issues we can see in the research are, that requires 
attention from the researchers: 

1.	 Explainability
	   Only 4 papers from 40 try to look at explainability 

issue and propose some kind of solution for it, for exam-
ple [93] mentions the way to detect disease related brain-
regions with optimal feature analysis methods, [99] tries 
to analyze and find the most affected brain region by 
AD, [79] paper which proposes a neuroimage fusion 
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techniques, which gives more context on the results 
from the model, and [75] uses Grad-CAM [107] to 
show to what regions in image model focuses the most. 
This issue is one of the drawbacks of created methods, 
because in clinical practice doctors need to assess the 
diagnosis and the lack of interpretability of the ML/
DL methods, which essentially are “blackboxes” does 
not make it easier. This key issue has not been solved 
yet, and our findings meet with the ones mentioned in 
reviewed literature reviews. To solve the explainability 
issue we would have to conduct a separate study, but as 
a guidance, if we are dealing with CNNs it is possible 
to use previously mentioned Grad-CAM or Shap values 
[106], which allows to see what features were most used 
for particular class. For neural networks it is possible 
to utilize decision trees, where solution could be traced 
from tree roots.

2.	 Small datasets
	   Publicly accessible datasets are usually full of differ-

ent modalities, but there is a small amount of patients 
in that dataset, who go through many different diag-
nostic methods and therefore have a small amount of 
modalities available for researchers. This is particularly 
sensitive for DL methods, which tend to overfit small 
datasets. To overcome this, researchers could collect all 
available public datasets and make a union. This could 
improve the variaty of data as different patients have 
different anatomy.

3.	 Same dataset for validation
	   Using the same dataset for model validation might 

introduce bias and falsely inflate the results of the 
model’s performance, therefore many researchers use 
cross-validation as a solution to this problem. However, 
the most preferred way would be to use a completely 
separate dataset for validation, this eliminates the risk 
of bias introduction.

4.	 Selection of ROI
	   When working with neuroimages and extracting fea-

tures typically researchers ROI (Region of Interest) aver-
age voxel intensities. There is usually a step in the process 
after feature extraction, to do a feature selection, which 
would reduce the amount of features for classifier to deal 
with. However, there is a possibility that feature selec-
tion method would introduce bias and might not select 
regions, which could be disease related. Most papers 
that use neuroimages extract handcrafted features (65%), 
which raises this ROI selection issue. The distribution 
of types of features is depicted in Fig. 13. To overcome 
this selection bias, it would be beneficial to cross-validate 
solutions with multiple different collections of ROI. Then 
we could compare and analyze why some collection of 
ROI is performing better or worse than others.

5.	 Imbalanced datasets
	   Some of the researchers used imbalanced datasets 

in their research. Data imbalance means that one class 
contains more samples than the other. This potentially 
increases bias into the model, because it might learn 
more features from one class than the other. This reduces 
generalizability and is preferred to always have the same 
number of samples in each data class.

5.9 � What are the potential future research areas?

Based on this study, these are the main research areas, which 
should get more attention in the future: 

1.	 Separate datasets for validation
	   As mentioned in the key issues Section 5.8, having 

separate dataset for validation is the most preferred way 
in the classification task, because it allows to eliminate 
the potential of bias introduction. We think the researchers 
should employ separate datasets for the validation of cre-
ated models instead of cross-validation and random split.

2.	 Explainability
	   It is clear at this point, that in order for AI to be more 

adopted in the clinical practice, researchers should spend 
more time in their research to improve the explainability 
of the models decision, because usually it is extremely 
hard to understand why some decision is made by the 
model if there is no interpretability component in it. As 
this issues is not solved yet, we believe it will receive 
increasing amount of attention from researchers in future.

3.	 Data imputation
	   Usually in open source datasets, there is a small 

amount of samples, which contain all of the selected 
data modalities in the study. Therefore, researchers 

Fig. 13   Feature types extracted from neuroimages distribution
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should look more into methods that can deal with miss-
ing data, or use data imputation techniques, like training 
GAN models to generate missing data modalities. This 
key issue is still present as it was also discovered in the 
reviewed literature reviews.

4.	 Multi-class classification
	   This task is not receiving enough attention at this 

moment. From this study we identified that only a 
small amount (5 out of 40) of articles try to investigate 
the multi-class classification problem. We believe that 
models developed to detect multiple dementia types 
or sub-types, for example, early or late MCI would be 
more beneficial. The amount of work required to create, 
train and validate one model versus a few when it comes 
to classifying different dementia types - significantly 
reduces. However, training multi-class classifier comes 
with its own challenges: one being the requirement for 
more distinct samples for each class to learn differences 
better. The problem is challenging and should receive 
more attention in the future from researchers.

5.	 More dementia detection types
	   In the study we observed that only 2 papers investi-

gated Parkinson’s disease and 1 paper Vascular demen-
tia. There are plenty of other dementia types, which were 
not captured by this study like Frontotemporal dementia, 
Huntington’s disease or HIV dementia. The study is lim-
ited, but also the amount of papers investigating these 
dementias. Therefore, we think in future other dementia 
types could be investigated instead of Alzheimer’s dis-
ease, which seems to be already reaching perfect detec-
tion accuracies.

5.10 � Limitations

A single person performed this study. Therefore, no cross-
validation of the results was performed. There could be a 
potential bias involved in the selection of the articles eligi-
ble for the study, data extraction errors, which could have 
occurred while extracting main key points from the selected 
studies. We tried to include as many papers from different 
scientific databases as we could to include all the relevant 
studies. However, there is a possibility that some studies 
were not included in the query results.

6 � Conclusion

This study investigated the early dementia detection prob-
lem from the multi-modal perspective with the focus on 
neuroimaging being used as one of the modalities. We 
reviewed 19 related literature reviews and 40 selected arti-
cles in the study. We used PRISMA methodology to query 5 
databases and select papers to promote reproduction of the 

study. We defined the dementia detection problem domain, 
extracted main issues and future research ares from past lit-
erature reviews, looked at what dementia types researchers 
focus their studies, what are state-of-the-art methods in the 
different dementia detection groups by comparing methods 
by accuracy, specificity and sensitivity, investigated dif-
ferent modalities combinations used and how models are 
being evaluated and validated, gathered datasets utilized in 
the research, common pre-processing and feature extraction 
from neuroimages techniques, defined key issues that we 
think are important in this research area as well as potential 
future research areas. Key findings of the research: (1) Alz-
heimer’s disease and MCI are the most researched dementia 
types in the field, 70% and 42.5% articles investigated them 
respectively; (2) typical choice for dementia detection is 
ML methods, 75.29% of papers used, where SVM and RF 
are the most popular types, 47.5% and 22.5% of papers used 
them respectively; (3) the most popular modalities combi-
nation is T1w + FDG-PET, 32.5% of articles used it; (4) 
accuracy, sensitivity and specificity are the main evalua-
tion metrics used by the researchers; (5) k-fold validation 
is being used the most, 75% of articles used it, due to rela-
tively small training and validation datasets; (6) ADNI is 
the most used dataset by researchers, 87.5% of articles used 
it; (7) intensity and spacial normalization, skull stripping 
and segmentation are the most common pre-processing 
techniques for neuroimages; (8) voxel average intensi-
ties are being used the most as features in classification 
extracted from neuroimages; (9) explainability still persists 
as one of the main issues in adoption of developed methods 
in clinical practise, because our findings match proposed by 
previous research; (10) there is a lack of research for other 
types of dementias, for example Vascular dementia, Fron-
totemporal dementia, Parkinson’s disease and Huntington’s 
disease. We sincerely hope that this study will help other 
researchers to focus their studies on the key aspects learned 
from our study.
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